<!--go-->
这篇数论论文,两位作者均来自MIT,他们通过一类全虚四次域的子环上的代数数的分解计算,结合狄利克雷L函数,得到了一类椭圆曲线的整数点。
这让沈奇想起了当年的谷山丰和志村五郞,以及怀尔斯和泰勒。
谷山-志村猜想提出了椭圆曲线和模形式之间的联系,即代数几何与数论之间的某种联系。
后来的事情大家都知道了,怀尔斯和泰勒在证明费马大定理的过程中证明了谷山-志村猜想。
历史总是这样,一个牛逼的主角身边必然配置一个性格鲜明又能干的副手。
谷山丰身边有志村五郞,怀尔斯身边有泰勒,一生跟随福尔摩斯的是华生,帮张无忌清小怪的是韦一笑。
“而我身边的能干副手是……”沈奇掐指一算,扯远了……这篇论文稿的核心内容是用数论方法解决椭圆曲线问题,与怀尔斯、谷山丰他们的思路恰好相反。
“还是有点意思的,这两位MIT的数论学者,其功力不在我老婆之下。”沈奇的老婆淡出数学界有一段时间了,而这个江湖强力新人不断涌现,竞争还是蛮激烈的。
给不给MIT的两位数学同仁过审呢?
沈奇陷入了沉思。
这不是普通的期刊,而是数学四大期刊之一的《数学年刊》。
如果沈奇一拍板,过!
两位作者肯定就美滋滋了。
最终,沈奇决定过审,因为两位MIT的作者确实写的不错。
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.baimalook.com
(>人<;)